Movement disorders and inactivity in Dementia

Dr. Hans Hobbelen (PhD, PT), professor in healthy Lifestyle, Ageing and Health Care

Lectoraat Transparante Zorgverlening
Hanze University of applied sciences Groningen. Research and innovation group in Health Care and Nursing
Overview IPTOP symposium

- Movement Disorders in dementia
 - Dr. Hans Hobbelen
 - Treatment strategies for movement disorders and cognitive decline
 - Dr. Jennifer Bottomley
 - The dangers of inactivity in dementia
 - Prof. Dr. Erik Scherder
Movement disorders in dementia
objectives

- Movements disorders are part of all types of dementia
- Every type of dementia has its specific motor disorders
- Movement disorders are possible early biomarkers
Motor control

• Movements are originated in the brain
• Yet it is a complex system of feed-forward and control variables
• The correct performance of a movement is dependent on a diversity of feedback loops.
• Adaptation is a key factor
The quality of the Movement is dependent on:

- The complexity of the task
- The familiarity with the task
- The quantity of training
- The integrity of the system
- The demands of surroundings
- The cognitive state (motivation, concentration and emotion)
Major neurocognitive disorder (NCD) DSM V

- Primarily Cognitive disorder
- Acquired and represent decline (i.e. not developmental)
- Underlying brain pathology
Cognitive domains DSM V

- Complex attention
- Executive function
- Learning and memory
- Language
- Perceptual-motor
- Social cognition
dementia

- Alzheimer (50-80%)
- Lewy-body (15-25%)
- Vascular dementia
- Other causes of dementia
Auguste D

A. Alzheimer 1907; Maurer 1997

- Reduced comprehension
- Memory deficits
- Aphasia
- Unpredictable behaviour
- Auditory hallucinations
- Reduced muscle strength Left side
- Rigid radial reflex
In early stage clumsiness (apraxia)

- Slowing down of movements
- Apathy or restlessness (aimless walking)
- Walking on forefoot, no armsway and stiff trunk
- Losing the ability to walk, severe paratonia and the development of contractures
Survival curve showing time to first fall by diagnosis.

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0005521
Movement dysfunction in mild AD

Gorus 2005

Fig. 1 - Reaction Time Test apparatus. A: Personal computer; B: control panel with 8 illuminating pushbuttons and a central ready pushbutton; C: loudspeaker; D: foot pedal.
Movement dysfunction in early AD

- Movement time equal
- Slowing of reaction time
- Selective attention declines
- Double tasks more difficult
- Error rate increases

Gorus et al, 2005, 2006
Walking in AD van Iersel 2004

• Walking speed declines
• Shortened step length
• Increased double support
• Greater step to step variability
Processing speed, walking speed and dementia Welmer 2014
Fig 3 Interaction between cognitive status and 3 different walking conditions for gait velocity (A) and gait variability (B). Abbreviation: % CoV, percent coefficient of variation in stride time.

Manuel Montero-Odasso, Susan W. Muir, Mark Speechley

Dual-Task Complexity Affects Gait in People With Mild Cognitive Impairment: The Interplay Between Gait Variability, Dual Tasking, and Risk of Falls

Archives of Physical Medicine and Rehabilitation, Volume 93, Issue 2, 2012, 293 - 299

http://dx.doi.org/10.1016/j.apmr.2011.08.026
• Performed TUG vs Imagined TUG
• MCI patients perform the iTUG significantly faster in comparison to Healthy controls and Mild AD
Paratonia

- A distinctive form of hypertonia
- movement disorder with an estimated prevalence of 10% in the early/mild stages, 90-100% in later/severe stages of AD.

Prevalence, incidence and risk factors of paratonia in patients with dementia: a one-year follow-up study

Johannes S. M. Hobbelen,1,2,3,4,5 Frans E. S. Tan,2,6 Frans R. J. Verhey,3,8 Raymond T. C. M. Koopmans7 and Rob A. de Bie2,4

In early stage dementia a prevalence of 10%
If paratonia is present a direct effect on the functional mobility
This has a direct impact on the quality of life
• In early stage of life developed Neural circuits are less vulnerable than those who develop in later stages.
• Different forms of dementia have different effects on various circuits.
Vascular dementia

• Motor disorders in diagnostic criteria
• Spasm and hemiparesis
• Walking speed declined
• wider walking base
• Paratonia/rigidity
• Balance (static and dynamic) control disturbed
Lewy Body dementie

- Bradykinesia
- Parkinsonian rigidity (lead-pipe phenomenon)
- Slowing down
- Small steps in walking
- Stability problems
- Freezing of gait
• Difficulties in initiating movements
• Core stability disturbed
• Balance disturbed
Fig. 1. Average number of contacts in the 5 years prior to diagnosis. * p < 0.05; *** p < 0.001.
Table 2. Predictive values of symptoms for the development of dementia

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Years prior to diagnosis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fifth</td>
<td>fourth</td>
<td>third</td>
<td>second</td>
<td>first</td>
<td></td>
</tr>
<tr>
<td>Cognitive symptoms</td>
<td>5.5 (0.5–51.8)</td>
<td>2.9 (0.9–9.5)</td>
<td>5.4 (1.1–28)*</td>
<td>13 (3.7–46)**</td>
<td>56 (16–194)***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.11</td>
<td>0.08</td>
<td>0.24</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Affective symptoms</td>
<td>1.5 (0.6–3.7)</td>
<td>0.7 (0.3–1.8)</td>
<td>1.0 (0.4–2.2)</td>
<td>1.1 (0.5–2.3)</td>
<td>3.0 (1.5–6.2)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>0.11</td>
<td>0.15</td>
<td>0.18</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.85</td>
<td>0.85</td>
<td>0.83</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Behavioural symptoms</td>
<td>1.1 (0.2–7.0)</td>
<td>0.9 (0.2–4.8)</td>
<td>3.5 (0.6–20)</td>
<td>2.4 (0.8–7.2)</td>
<td>14 (3.2–65)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.11</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.95</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Vascular symptoms</td>
<td>0.7 (0.3–1.9)</td>
<td>0.9 (0.4–2.1)</td>
<td>1.4 (0.6–3.2)</td>
<td>0.96 (0.4–2.4)</td>
<td>1.6 (0.7–3.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>0.86</td>
<td>0.88</td>
<td>0.89</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Gait disturbances</td>
<td>3.0 (1.2–10)*</td>
<td>1.5 (0.6–3.6)</td>
<td>3.8 (1.4–11)*</td>
<td>2.2 (0.98–4.9)</td>
<td>6.1 (3.1–12)***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.14</td>
<td>0.16</td>
<td>0.2</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.9</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Changes in weight and appetite</td>
<td>0.6 (0.1–2.8)</td>
<td>0.8 (0.2–3.5)</td>
<td>1.1 (0.4–3.0)</td>
<td>1.8 (0.5–5.6)</td>
<td>5.9 (2.2–16)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>0.09</td>
<td>0.08</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.95</td>
<td>0.91</td>
<td>0.95</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

CI = Confidence interval. * p < 0.05; ** p < 0.01; *** p < 0.001.
Motor impairment predicts AD

- The degree of motor impairment in lower extremity in MCI is related to the risk of AD. Aggerwal et al 2006

- Lower levels of physical performance were associated with an increased risk of dementia and AD. Wang et al 2006
But what are we looking at?

• Physical frailty in old age is associated with Alzheimer disease pathology in older persons with and without dementia. Buchman et al Neurology 2008

• 10 years or more before the cognitive decline is visible in Alzheimer’s Disease deposition of A-Beta already present Sperling 2011
Figure 5. Revised dynamic biomarkers of the AD pathological cascade model – 2012
So what are we looking at?

- Is a lower level of motor performance a risk-factor for dementia?
- Or is it a first sign of brain pathology?
Figure 5. Revised dynamic biomarkers of the AD pathological cascade model – 2012
If it is a first sign of brain pathology than motor assessment can be of importance in early diagnostics → easy, not invasive and low costs:

- Gait parameters (speed, variability, functional)
- Paratonia
- Processing speed
- Imagery movement
- Dual tasks
Movements disorders are part of all types of dementia

Every type of dementia has its specific motor disorders

Research necessary if Movement disorders are possible early biomarkers

A good analysis of the present motor disorder is a good starting point for rehabilitation.

lecture dr. Jennifer Bottomley
Thank you for your attention!