MACREDES – Modelling a resilient decentralized energy system

EDGaR – Energy Delta Gas Research, the Netherlands

Bert Kooi, Wim Timmerman, Wim Mallon, Naim Majdalani, Luuk Buit
September 4, 2014
Contents

- Background of the project
- Aim and approach of the research
- Energy balancing model
- Outcome of simplistic scenarios
- Outlook
Background of the project

- EDGaR project, 2010 – 2014, see http://www.edgar-program.com/

- Abbreviation of:

MApping the Contextual conditions of Resilient Decentralized Energy Systems

- Multi-disciplinary research with the University of Groningen, the Hanze University of Applied Science and DNV GL (on behalf of Gasunie)
- Role of DNV GL and Hanze: WP1 (Technical aspects)

- Essence:
 - What is the regional energy potential of a region? (project focus on Northern Netherlands)
 - What is a realistic transition to a Resilient Decentralized Energy System?
Aim and approach of the research

- **Aim**: Determining technical conditions of a resilient decentralized energy system

- **Approach**:
 - Modeling (Matlab and Excel)
 - Finding an optimal solution, combining energy supply, demand, storage and conversion
 - Showing the technical implications of energy policies
Energy balancing model

Value of the model: enabling estimations of the viability of solutions
Provide insight to policy makers

Question: can the energy demand (E, H, G) be met on hourly basis, in a specific area from decentralized and partly non-adjustable supply?

- Generating sufficient energy
- Balancing temporary surpluses and shortages using storage
- If necessary, convert energy from one source to another

Supply, storage and conversion are varied in size and number until the energy demand is met at all times

- Focus on Northern Netherlands, but model is applicable to many regions
Focus region Northern Netherlands
Input of the model

- Energy demand $E_e(t)$, $E_h(t)$ en $E_g(t)$ (electricity, heat and gas)
- Numbers and sizes of
 - energy sources
 - storage capacities
 - conversion capacities
- Solar and wind profiles (hourly basis)
Output of the model

1. The energy delivered as a function of time (constraints: demand is met at all times, over the simulation period there is supply and demand equilibrium)
2. Surface area required for the energy system
3. Costs

These results are used for further analysis (e.g. compatibility with other constraints (societal, legal, economical, etc.)
Basic algorithm of Macredes model

For every hour, this algorithm is executed:

SUPPLY NODES
- Wind electricity
- PV electricity
- Green gas supply
- Heat sources

POOLING
1. Electricity pool
2. Gas pool
3. Heat pool

DEMAND NODES
- Electricity demand
- Gas demand
- Heat demand

STORAGE NODES
- Electricity storage
- Gas storage
- Heat storage
Some profiles: energy demand electricity, gas and heat

- **Electricity**
- **Gas**
- **Heat**
Some profiles: wind and solar energy

Wind Speeds Offshore (m/s)

Solar energy delivered per hour per square meter (Wh)
Some profiles: electric car

Electricity demand for one electric car with a kWh battery
Results on simplified scenarios – only PV production

- Stored energy as a function of time

- Constraint: storage may never be empty
- Regular demand pattern, PV production pattern
- Storage very often full
Results on simplified scenarios – only PV production

- Production capacity vs. required electric storage
- Extensive series of model runs
- Regular demand pattern, PV only energy source
- Clear tradeoff between generation capacity and storage capacity
Results on simplified scenarios – only wind onshore

- Regular demand pattern, wind onshore production pattern
- 3 MW turbines
- Storage never full in this case
Results on simplified scenarios – only wind turbines onshore

- Production capacity vs. required electric storage
- Extensive series of model runs
- Regular demand pattern, PV only energy source
- Clear trade-off between generation capacity and storage capacity
Results on simplified scenarios – only wind offshore

- Regular demand pattern, wind offshore production pattern
- 7,5 MW turbines
- Storage often full in this case
Results on simplified scenarios – only wind turbines offshore

- Production capacity vs. required electric storage
- Extensive series of model runs
- Regular demand pattern, offshore wind only energy source
- Sharp bend in the curve
What can we use this for?

- Calculate energy system scenarios
- Show consequences of choices (e.g. target of x % power from renewable sources)
- Support integral thinking on the energy transition
- Visualization concept:

 Every dot represents an energy system configuration

 Separation between technically feasible and unfeasible configurations

 Triangle represents set of viable energy system configurations

Wishful thinking
Conclusion and outlook

- Macredes model built to be able to:
 - Calculate technical feasibility of energy transition targets
 - Show relationship between required surface area and cost
 - Help determine optimal energy system layout

- The model will be used for complex energy systems
 - Multiple (renewable) energy sources
 - Multiple storage technologies (with charging, discharging capacities)
 - Multiple energy conversion options (with ramp-up and ramp-down constraints)
 - Exchange with ‘foreign’ energy systems

- Put simply: can you reach your transition targets? Which technologies do you need?
Macredes scenario results: quick and rough calculations

- Calculation resulted in technically possible coverage of most energy demand
- Costs not calculated, but – based on technical specifications – expected to be very high
- Not enough biomass for transport fuels:
 - (Solution: more electrical vehicles – but problems with electricity generating capacity)

Conclusion:
1. Conversion and temporal balancing essential for viable renewable energy system
 (Note: Embedded CO₂ not even considered)
2. Renewable energy system incompatible with current living standard

Solution?
- Energy efficiency measures
- Revolution in electricity storage
- Demand shifting schemes
- More radical: reduction in energy consumption and wealth?

Source: infobae.com
Thank you. Questions?

Luuk Buit
luuk.buit@dnvgl.com
+31 50 700 9772

www.dnvgl.com