TY - JOUR
T1 - Smart and sustainable
T2 - Exploring the future of PHAs biopolymers for 3D printing in tissue engineering
AU - Zur-Pinska, J
AU - Gladysz, M Z
AU - Ubels, Didi
AU - Siebring, Jeroen
AU - Wlodaryczik-Biegun, M K
PY - 2023/12
Y1 - 2023/12
N2 - Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers (polyesters), produced by a wide range of bacterial strains. They are gaining increasing interest in different research fields, due to their sustainability and environmental-friendly properties. Additionally, PHAs are also biocompatible, which makes them interesting for tissue engineering and regenerative medicine. At the same time, they are characterized by properties ideal for 3D printing processing, such as high tensile strength, easy processability and thermoplasticity. To date, the techniques employed in PHAs printing mostly include fused deposition modeling (FDM), selective laser sintering (SLS), electrospinning (ES), and melt electrospinning (MES). In this review, we provide a comprehensive summary of the versatile and sustainably sourced bacterial PHAs, also modified by blending with natural and synthetic polymers (e.g., PLA, PGA) or combining them with inorganic fillers (e.g., nanoparticles, glass), used for 3D printing in biomedical applications. We specify focus on the printing conditions and the properties of the obtained scaffolds with a focus on the print resolution and scaffolds mechanical and biological properties. New perspectives in the emerging field of PHAs biofabrication process, characterized by sustainability and efficiency of the scaffold production, are demonstrated. The use of alternative printing techniques, i.e. melt electrowriting (MEW), and producing smart and functional materials degrading on demand under in vitro and in vivo conditions is proposed.
AB - Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers (polyesters), produced by a wide range of bacterial strains. They are gaining increasing interest in different research fields, due to their sustainability and environmental-friendly properties. Additionally, PHAs are also biocompatible, which makes them interesting for tissue engineering and regenerative medicine. At the same time, they are characterized by properties ideal for 3D printing processing, such as high tensile strength, easy processability and thermoplasticity. To date, the techniques employed in PHAs printing mostly include fused deposition modeling (FDM), selective laser sintering (SLS), electrospinning (ES), and melt electrospinning (MES). In this review, we provide a comprehensive summary of the versatile and sustainably sourced bacterial PHAs, also modified by blending with natural and synthetic polymers (e.g., PLA, PGA) or combining them with inorganic fillers (e.g., nanoparticles, glass), used for 3D printing in biomedical applications. We specify focus on the printing conditions and the properties of the obtained scaffolds with a focus on the print resolution and scaffolds mechanical and biological properties. New perspectives in the emerging field of PHAs biofabrication process, characterized by sustainability and efficiency of the scaffold production, are demonstrated. The use of alternative printing techniques, i.e. melt electrowriting (MEW), and producing smart and functional materials degrading on demand under in vitro and in vivo conditions is proposed.
KW - biopolymers
KW - sustainable
KW - 3d printing
KW - biopolymeren
KW - duurzaam
KW - 3d printen
M3 - Article
SN - 2214-9937
VL - 38
JO - Sustainable Materials and Technologies
JF - Sustainable Materials and Technologies
ER -