Convergence of estimates of unique variances in factor analysis, based on the inverse sample covariance matrix

Onderzoeksoutput: ArticleAcademicpeer review

Samenvatting

If the ratio m/p tends to zero, where m is the number of factors m and p the number of observable variables, then the inverse diagonal element of the inverted observable covariance matrix (σ pjj) -1 tends to the corresponding unique variance ψ jj for almost all of these (Guttman, 1956). If the smallest singular value of the loadings matrix from Common Factor Analysis tends to infinity as p increases, then m/p tends to zero. The same condition is necessary and sufficient for (σ pjj) -1 to tend to ψ jj for all of these. Several related conditions are discussed. © 2006 The Psychometric Society.
Originele taal-2English
Pagina's (van-tot)193-199
TijdschriftPsychometrika. Vol 67(1)
Volume71
Nummer van het tijdschrift1
DOI's
StatusPublished - 1 mrt. 2006

Keywords

  • factoranalyse

Vingerafdruk

Duik in de onderzoeksthema's van 'Convergence of estimates of unique variances in factor analysis, based on the inverse sample covariance matrix'. Samen vormen ze een unieke vingerafdruk.

Citeer dit