Context dependent learning in neural networks

L.J. Spreeuwers, B.J. Van Der Zwaag, F. Van Der Heijden

Onderzoeksoutput: Contribution to conference proceedingAcademicpeer review

Samenvatting

In this paper an extension to the standard error back-propagation learning rule for multi-layer feed forward neural networks is proposed, that enables them to trained for context dependent information. The context dependent learning is realised by using a different error function (called Average Risk: AVR) in stead of the sum of squared errors (SQE) normally used in error backpropagation and by adapting the update rules. It is shown that for applications where this context dependent information is important, a major improvement in performance is obtained.
Originele taal-2English
TitelFifth International Conference on Image Processing and its Applications, 1995.
UitgeverijIET
Pagina's632-636
Aantal pagina's5
ISBN van geprinte versie0-85296-642-3
DOI's
StatusPublished - 6 jul. 1995
Extern gepubliceerdJa
EvenementFifth International Conference on Image Processing and its Applications, 1995. - Edinburgh
Duur: 4 jul. 19956 jul. 1995

Conference

ConferenceFifth International Conference on Image Processing and its Applications, 1995.
Periode4/07/956/07/95

Keywords

  • terugpropagatie
  • feedforward neuraal netwerk
  • meerlaagse perceptronen

Vingerafdruk

Duik in de onderzoeksthema's van 'Context dependent learning in neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit