TY - JOUR
T1 - The validity of ultrasound-derived equation models to predict whole-body muscle mass
T2 - A systematic review
AU - Van den Broeck, Jona
AU - Buzzatti , Luca
AU - Jager-Wittenaar, Harriët
AU - Perkisas, Stany
AU - Scafoglieri, Aldo
PY - 2021/12
Y1 - 2021/12
N2 - Background & aims: Sarcopenia is defined as the age-related loss in muscle quantity and quality which is associated with physical disability. The assessment of muscle quantity plays a role in the diagnosis of sarcopenia. However, the methods used for this assessment have many disadvantages in daily practice and research, like high costs, exposure to radiation, not being portable, or doubtful reliability. Ultrasound has been suggested for the estimation of muscle quantity by estimating muscle mass, using a prediction equation based on muscle thickness. In this systematic review, we aimed to summarize the available evidence on existing prediction equations to estimate muscle mass and to assess whether these are applicable in various adult populations. Methods: The databases PubMed, PsycINFO, and Web of Science were used to search for studies predicting total or appendicular muscle mass using ultrasound. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) and the quality assessment checklist (QA) designed by Pretorius and Keating (2008). Results: Twelve studies were included in this systematic review. The participants were between 18 and 79 years old. Magnetic Resonance Imaging and dual-energy X-ray absorptiometry were used as reference methods. The studies generally had low risk of bias and there were low concerns regarding the applicability (QUADAS-2). Nine out of eleven studies reached high quality on the QA. All equations were developed in healthy adults. Conclusions: The ultrasound-derived equations in the included articles are valid and applicable in a healthy population. For a Caucasian population we recommend to use the equation of Abe et al., 2015. While for an Asian population, we recommend to use the equation of Abe et al., 2018, for the South American population, the use of the equation of Barbosa-Silva et al., 2021 is the most appropriate.
AB - Background & aims: Sarcopenia is defined as the age-related loss in muscle quantity and quality which is associated with physical disability. The assessment of muscle quantity plays a role in the diagnosis of sarcopenia. However, the methods used for this assessment have many disadvantages in daily practice and research, like high costs, exposure to radiation, not being portable, or doubtful reliability. Ultrasound has been suggested for the estimation of muscle quantity by estimating muscle mass, using a prediction equation based on muscle thickness. In this systematic review, we aimed to summarize the available evidence on existing prediction equations to estimate muscle mass and to assess whether these are applicable in various adult populations. Methods: The databases PubMed, PsycINFO, and Web of Science were used to search for studies predicting total or appendicular muscle mass using ultrasound. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) and the quality assessment checklist (QA) designed by Pretorius and Keating (2008). Results: Twelve studies were included in this systematic review. The participants were between 18 and 79 years old. Magnetic Resonance Imaging and dual-energy X-ray absorptiometry were used as reference methods. The studies generally had low risk of bias and there were low concerns regarding the applicability (QUADAS-2). Nine out of eleven studies reached high quality on the QA. All equations were developed in healthy adults. Conclusions: The ultrasound-derived equations in the included articles are valid and applicable in a healthy population. For a Caucasian population we recommend to use the equation of Abe et al., 2015. While for an Asian population, we recommend to use the equation of Abe et al., 2018, for the South American population, the use of the equation of Barbosa-Silva et al., 2021 is the most appropriate.
KW - equation
KW - muscle mass
KW - prediction
KW - ultrasound
KW - echografie
KW - spiermassa
KW - vergelijking
KW - voorspelling
U2 - 10.1016/j.clnesp.2021.08.012
DO - 10.1016/j.clnesp.2021.08.012
M3 - Article
SN - 2405-4577
VL - 46
SP - 133
EP - 141
JO - Clinical Nutrition ESPEN
JF - Clinical Nutrition ESPEN
ER -