Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes

Mervin Schreurs, Anne Benjaminse, Koen Lemmink

Research output: Contribution to journalArticleAcademicpeer-review

128 Downloads (Pure)

Abstract

Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45 , 90 , 135 and 180 ) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45 , 90 , 135 and 180 ) and sex (female, male), a 4 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at a 0.05 a priori. Results: At all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion 42.53 ± 8.95 , females decreased their knee flexion angle from 40.6 ± 7.2 when cutting at 45 to 36.81 ± 9.10 when cutting at 90 , 135 and 180 (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90 , 135 and 180 , males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cut- ting angles and then stabilized compared to the 45 cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01). Conclusion: It can be concluded that different cutting angles demand different knee kinematics and kinet- ics. Sharper cutting angles place the knee more at risk. However, females and males handle this differ- ently, which has implications for injury prevention.
Original languageEnglish
Number of pages7
JournalJournal of biomechanics
Publication statusPublished - 2017

Keywords

  • motor learning
  • injury prevention
  • sports

Cite this

@article{cf3a8a4f75464d658897844046781e2c,
title = "Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes",
abstract = "Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45 , 90 , 135 and 180 ) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45 , 90 , 135 and 180 ) and sex (female, male), a 4 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at a 0.05 a priori. Results: At all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion 42.53 ± 8.95 , females decreased their knee flexion angle from 40.6 ± 7.2 when cutting at 45 to 36.81 ± 9.10 when cutting at 90 , 135 and 180 (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90 , 135 and 180 , males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cut- ting angles and then stabilized compared to the 45 cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01). Conclusion: It can be concluded that different cutting angles demand different knee kinematics and kinet- ics. Sharper cutting angles place the knee more at risk. However, females and males handle this differ- ently, which has implications for injury prevention.",
keywords = "motor learning, injury prevention, sports, sport, blessures",
author = "Mervin Schreurs and Anne Benjaminse and Koen Lemmink",
year = "2017",
language = "English",
journal = "Journal of biomechanics",
issn = "1873-2380",
publisher = "Elsevier Science",

}

Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. / Schreurs, Mervin; Benjaminse, Anne; Lemmink, Koen.

In: Journal of biomechanics, 2017.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes

AU - Schreurs, Mervin

AU - Benjaminse, Anne

AU - Lemmink, Koen

PY - 2017

Y1 - 2017

N2 - Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45 , 90 , 135 and 180 ) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45 , 90 , 135 and 180 ) and sex (female, male), a 4 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at a 0.05 a priori. Results: At all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion 42.53 ± 8.95 , females decreased their knee flexion angle from 40.6 ± 7.2 when cutting at 45 to 36.81 ± 9.10 when cutting at 90 , 135 and 180 (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90 , 135 and 180 , males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cut- ting angles and then stabilized compared to the 45 cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01). Conclusion: It can be concluded that different cutting angles demand different knee kinematics and kinet- ics. Sharper cutting angles place the knee more at risk. However, females and males handle this differ- ently, which has implications for injury prevention.

AB - Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45 , 90 , 135 and 180 ) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45 , 90 , 135 and 180 ) and sex (female, male), a 4 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at a 0.05 a priori. Results: At all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion 42.53 ± 8.95 , females decreased their knee flexion angle from 40.6 ± 7.2 when cutting at 45 to 36.81 ± 9.10 when cutting at 90 , 135 and 180 (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90 , 135 and 180 , males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cut- ting angles and then stabilized compared to the 45 cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01). Conclusion: It can be concluded that different cutting angles demand different knee kinematics and kinet- ics. Sharper cutting angles place the knee more at risk. However, females and males handle this differ- ently, which has implications for injury prevention.

KW - motor learning

KW - injury prevention

KW - sports

KW - sport

KW - blessures

UR - https://www.ncbi.nlm.nih.gov/pubmed/28886868

M3 - Article

JO - Journal of biomechanics

JF - Journal of biomechanics

SN - 1873-2380

ER -