TY - JOUR
T1 - Joint Interference and Power Minimization for Fault-Tolerant Topology in Sensor Networks
AU - Moraes, Renato
AU - Silva, Yngrith
AU - Martins, Felipe
AU - Lima Silva, Jair
AU - Rocha, Helder Roberto Oliveira
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Energy conservation is crucial in wireless ad hoc sensor network design to increase network lifetime. Since communication consumes a major part of the energy used by a sensor node, efficient communication is important. Topology control aims at achieving more efficient communication by dropping links and reducing interference among simultaneous transmissions by adjusting the nodes’ transmission power. Since dropping links make a network more susceptible to node failure, a fundamental problem in wireless sensor networks is to find a communication graph with minimum interference and minimum power assignment aiming at an induced topology that can satisfy fault-tolerant properties. In this paper, we examine and propose linear integer programming formulations and a hybrid meta-heuristic GRASP/VNS (Greedy Randomized Adaptive Search Procedure/Variable Neighborhood Search) to determine the transmission power of each node while maintaining a fault-tolerant network and simultaneously minimize the interference and the total power consumption. Optimal biconnected topologies for moderately sized networks with minimum interference and minimum power are obtained using a commercial solver. We report computational simulations comparing the integer programming formulations and the GRASP/VNS, and evaluate the effectiveness of three meta-heuristics in terms of the tradeoffs between computation time and solution quality. We show that the proposed meta-heuristics are able to find good solutions for sensor networks with up to 400 nodes and that the GRASP/VNS was able to systematically find the best lower bounds and optimal solutions.
AB - Energy conservation is crucial in wireless ad hoc sensor network design to increase network lifetime. Since communication consumes a major part of the energy used by a sensor node, efficient communication is important. Topology control aims at achieving more efficient communication by dropping links and reducing interference among simultaneous transmissions by adjusting the nodes’ transmission power. Since dropping links make a network more susceptible to node failure, a fundamental problem in wireless sensor networks is to find a communication graph with minimum interference and minimum power assignment aiming at an induced topology that can satisfy fault-tolerant properties. In this paper, we examine and propose linear integer programming formulations and a hybrid meta-heuristic GRASP/VNS (Greedy Randomized Adaptive Search Procedure/Variable Neighborhood Search) to determine the transmission power of each node while maintaining a fault-tolerant network and simultaneously minimize the interference and the total power consumption. Optimal biconnected topologies for moderately sized networks with minimum interference and minimum power are obtained using a commercial solver. We report computational simulations comparing the integer programming formulations and the GRASP/VNS, and evaluate the effectiveness of three meta-heuristics in terms of the tradeoffs between computation time and solution quality. We show that the proposed meta-heuristics are able to find good solutions for sensor networks with up to 400 nodes and that the GRASP/VNS was able to systematically find the best lower bounds and optimal solutions.
KW - wireless sensor networks
KW - interference
KW - wireless communication
KW - fault tolerant systems
KW - draadloze sensornetwerken
KW - interferentie
KW - draadloze communicatie
KW - fouttolerante systemen
U2 - 10.1109/ACCESS.2024.3420869
DO - 10.1109/ACCESS.2024.3420869
M3 - Article
SN - 2169-3536
VL - 12
SP - 120198
EP - 120218
JO - IEEE Access
JF - IEEE Access
ER -