Distinct turbulent regions in the wake of a wind turbine and their inflow-dependent locations: the creation of a wake map

Gerard Schepers, Ingrid Neunaber , Michael Hölling , Richard J.A.M. Stevens , Joachim Peinke

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Wind turbines are usually clustered in wind farms which causes the downstream turbines to operate in the turbulent wakes of upstream turbines. As turbulence is directly related to increased fatigue loads, knowledge of the turbulence in the wake and its evolution are important. Therefore, the main objective of this study is a comprehensive exploration of the turbulence evolution in the wind turbine’s wake to identify characteristic turbulence regions. For this, we present an experimental study of three model wind turbine wake scenarios that were scanned with hot-wire anemometry with a very high downstream resolution. The model wind turbine was exposed to three inflows: laminar inflow as a reference case, a central wind turbine wake, and half of the wake of an upstream turbine. A detailed turbulence analysis reveals four downstream turbulence regions by means of the mean velocity, variance, turbulence intensity, energy spectra, integral and Taylor length scales, and the Castaing parameter that indicates the intermittency, or gustiness, of turbulence. In addition, a wake core with features of homogeneous isotropic turbulence and a ring of high intermittency surrounding the wake can be identified. The results are important for turbulence modeling in wakes and optimization of wind farm wake control
Original languageEnglish
Number of pages20
JournalEnergies
Volume13
Issue number20
Publication statusPublished - 15 Oct 2020

Keywords

  • renewable energy
  • wind energy
  • wind turbine wake
  • turbulence decay
  • homogeneous isotropic turbulence
  • wake map

Fingerprint Dive into the research topics of 'Distinct turbulent regions in the wake of a wind turbine and their inflow-dependent locations: the creation of a wake map'. Together they form a unique fingerprint.

Cite this