Project Details
Description
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry.
Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers.
The XAIPre project (pronounce Xyper) aims at developing Explainable Predictive Maintenance algorithms that do not only provide the engineers with a prediction but in addition, with a risk analysis on the components when delaying the maintenance, and what the primary indicators are that the algorithms use to create inference.
To use predictive maintenance effectively in Maritime operations, the predictive models and also the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane but also the vessel is performing. Thus the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze University of Applied Sciences in Groningen (Hanze UAS), context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that are already developed and available from the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The resulting XAIPre prototype offers significant competitive advantages for maritime companies such as Heerema, by increasing the longevity of machine components, increasing worker safety and decreasing maintenance costs.
Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers.
The XAIPre project (pronounce Xyper) aims at developing Explainable Predictive Maintenance algorithms that do not only provide the engineers with a prediction but in addition, with a risk analysis on the components when delaying the maintenance, and what the primary indicators are that the algorithms use to create inference.
To use predictive maintenance effectively in Maritime operations, the predictive models and also the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane but also the vessel is performing. Thus the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze University of Applied Sciences in Groningen (Hanze UAS), context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that are already developed and available from the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The resulting XAIPre prototype offers significant competitive advantages for maritime companies such as Heerema, by increasing the longevity of machine components, increasing worker safety and decreasing maintenance costs.
Short title | XAIPre |
---|---|
Status | Active |
Effective start/end date | 3/01/22 → 3/01/26 |
Collaborative partners
- Hanze University of Applied Sciences
- University Leiden, Leiden Institute of Advanced Computer Science (lead)