Project Details
Description
In recent years, frequent earthquakes have been reported in the Groningen region due to gas extraction. The building stock of the region mainly consists of brick masonry structures which were built without any seismic design taken into consideration. Therefore, these structures are extremely vulnerable to the loads coming from the earthquakes hitting the Groningen area on a regular basis. Numerous damage claims for damages on structures arise after every earthquake. In order to protect and reassure the structural integrity of the numerous brick masonry structures (more than 14.000 lay in the seismic zone), innovative solutions need to be developed. One of the approaches is to strengthen these houses extensively, up to a level that earthquake forces do not affect the original structure. This approach results in heavy and most of the times ugly strengthening solutions. A promising technology seems to be the installation of a vibration isolating concrete at the foundation level in order to decrease the vibration demands to the structures during the earthquake events. This latter method has been developed by the partner of this project, Nederboom, and will be investigated further for its advantages over the conventional techniques in terms of efficacy, applicability and cost. The aim of the proposed project is to carry out an experimental campaign to provide the essential experimental background to introduce and validate the effectiveness of this technology when repeated earthquake loads are applied several times on a brick masonry structural component. The experiments will be performed at the testing facilities of BuildinG, partner of the project, and will be supervised by members of the Earthquake Research Group of Hanze University of Applied Sciences.
Short title | VIBRO-TEST |
---|---|
Status | Finished |
Effective start/end date | 1/12/19 → 30/04/21 |
Collaborative partners
- Hanze University of Applied Sciences (lead)
- BuildinG
- Nederboom