MICROL - Micro and nanoparticulate protein based controlled release and delivery systems for pharmaceuticals through supercritical microfluidic processing

Project: Research

Project Details

Description

Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.
Short titleMICROL
StatusActive
Effective start/end date1/02/2231/01/26

Collaborative partners